SA421 - Simulation Modeling Fall 2017
Assoc. Profs. D. Phillips and N. Uhan

Assignment 2
Instructions. Work with a partner on this assignment.

Suppose the Nimitz Coffee Bar is more complex than the version we encountered in Lesson 3. If a customer orders
drip coffee, they do not need a barista. Instead, the cashier gives the customer an appropriately sized cup, and the
customer goes to a separate queue to wait for a self-serve dispenser to pour their own coftee. In this assignment, you
will model this additional feature.

Make the following assumptions:

e 40% of customers order drip coffee;
¢ Nimitz Coffee Bar has one drip coffee dispenser which we assume does not run out of coffee;

e The time to pour coffee is best modeled by an exponential random variable with mean 40 seconds.
Start by downloading the base JaamSim model (i.e. the model we created in Lesson 3) from here:
https://github.com/sa421-usna/assignment-02/zipball/master
Implementing the drip coffee customers can be done in the following way in JaamSim:

1. Model the process of customers using the self-service dispenser. Use the Queue, Seize, EntityDelay, Release,
Resource, and ExponentialDistribution objects to model this part of the cafe.

2. Divide the flow of customers from the cashier. This can be accomplished by using a Branch object after the
Cashier. A Branch object directs an incoming entity to a destination that is chosen from a list of alternatives.
Some key inputs for Branch objects:

Keyword What is this?

NextComponentList A list of possible objects to which the incoming entity can be passed

Choice A number that determines the choice of the next component: 1 = first in
NextComponentList, 2 = second in NextComponentList, etc.

Set up the Branch object by putting the BaristaQ and Queue for the self-serve dispenser in the NextCompo-
nentList. For now, set the Choice field to 1 or 2. Run the simulation and see what happens.

3. Model the customer type. We will accomplish this using attributes. Attributes can be defined for each generated
entity in a model - e.g. each arriving customer. (They can also be defined for objects.)
In the Customer object, set up an Attribute called DrinkType with a default value of 1 by setting AttributeDefini-
tionList to

DrinkType 1

Immediately after a Customer enters, we will randomly assign it a type, 1 or 2. To do this, first place a DiscreteDis-
tribution object called DrinkDist in your model.'Set UnitType in this object to DimensionlessUnit, ValueList
to


uhan
Highlight


12
and ProbabilityList to
.6 .4

This object will generate a value 1 with probability .6 and 2 with probability .4. To obtain a random sample from
this distribution elsewhere in our model, we can write

[DrinkDist] .Value

as we'll see below.

Next, place an Assign object between the Entrance and Cashier objects. The Assign object assigns one or more
Attribute values to an incoming entity. Some key inputs for Assign objects:

Keyword What is this?

NextComponent This is where the incoming entity goes next
AttributeAssignmentList A list of attribute assignments

An attribute assignment looks like this:
{ ’this.obj.DrinkType = [DrinkDist].Value’ }

In the attribute assignment above, this. obj refers to the incoming entity. Here, the incoming entity’s DrinkType
attribute is set to a random sample of DrinkDist.

Finally, in the Branch object you placed right after the cashier, change the value of Choice so that 40% of the

customers go to the self-serve dispenser.

. The Graph object in the base model tracks average delay in the BaristaQ Queue. Study this Graph object, and
add a Graph that tracks average delay in the Queue object you set up for the self-serve dispenser.


uhan
Highlight


