
SA421 – Simulation Modeling Fall 2017
Assoc. Profs. D. Phillips and N. Uhan

Assignment 2

Instructions. Work with a partner on this assignment.

Suppose the Nimitz Co�ee Bar is more complex than the version we encountered in Lesson 3. If a customer orders
drip co�ee, they do not need a barista. Instead, the cashier gives the customer an appropriately sized cup, and the
customer goes to a separate queue to wait for a self-serve dispenser to pour their own co�ee. In this assignment, you
will model this additional feature.

Make the following assumptions:

● 40% of customers order drip co�ee;

● Nimitz Co�ee Bar has one drip co�ee dispenser which we assume does not run out of co�ee;

● �e time to pour co�ee is best modeled by an exponential random variable with mean 40 seconds.

Start by downloading the base JaamSim model (i.e. the model we created in Lesson 3) from here:

https://github.com/sa421-usna/assignment-02/zipball/master

Implementing the drip co�ee customers can be done in the following way in JaamSim:

1. Model the process of customers using the self-service dispenser. Use the Queue, Seize, EntityDelay, Release,
Resource, and ExponentialDistribution objects to model this part of the cafe.

2. Divide the 
ow of customers from the cashier. �is can be accomplished by using a Branch object a�er the
Cashier. A Branch object directs an incoming entity to a destination that is chosen from a list of alternatives.
Some key inputs for Branch objects:

Keyword What is this?

NextComponentList A list of possible objects to which the incoming entity can be passed
Choice A number that determines the choice of the next component: 1 = �rst in

NextComponentList, 2 = second in NextComponentList, etc.

Set up the Branch object by putting the BaristaQ and Queue for the self-serve dispenser in the NextCompo-
nentList. For now, set the Choice �eld to 1 or 2. Run the simulation and see what happens.

3. Model the customer type. We will accomplish this using attributes. Attributes can be de�ned for each generated
entity in a model – e.g. each arriving customer. (�ey can also be de�ned for objects.)

In the Customer object, set up an Attribute called DrinkType with a default value of 1 by setting AttributeDe�ni-
tionList to

DrinkType 1

Immediately a�er a Customer enters, we will randomly assign it a type, 1 or 2. To do this, �rst place a DiscreteDis-
tribution object called DrinkDist in your model. Set UnitType in this object to DimensionlessUnit, ValueList
to

1

uhan
Highlight



1 2

and ProbabilityList to

.6 .4

�is object will generate a value 1 with probability .6 and 2 with probability .4. To obtain a random sample from
this distribution elsewhere in our model, we can write

[DrinkDist].Value

as we’ll see below.

Next, place an Assign object between the Entrance and Cashier objects. �e Assign object assigns one or more
Attribute values to an incoming entity. Some key inputs for Assign objects:

Keyword What is this?

NextComponent �is is where the incoming entity goes next
AttributeAssignmentList A list of attribute assignments

An attribute assignment looks like this:

{ ’this.obj.DrinkType = [DrinkDist].Value’ }

In the attribute assignment above, this.obj refers to the incoming entity. Here, the incoming entity’s DrinkType
attribute is set to a random sample of DrinkDist.

Finally, in the Branch object you placed right a�er the cashier, change the value of Choice so that 40% of the
customers go to the self-serve dispenser.

4. �e Graph object in the base model tracks average delay in the BaristaQ Queue. Study this Graph object, and
add a Graph that tracks average delay in the Queue object you set up for the self-serve dispenser.

2

uhan
Highlight


